skip to main content


Search for: All records

Creators/Authors contains: "Garneau, Danielle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Overwintering monarch (Danaus plexippus) populations have declined since the 1990s. In response, restoration of milkweeds, including Asclepias syriaca (common milkweed), an important host plant in their breeding grounds, has become increasingly common. However, latitudinal variation in milkweed populations suggests the possibility of regional adaptation and the potential for seed provenance to affect restoration success. Using seeds from 20 populations throughout the range of A. syriaca, we tested whether seed mass, germination success, and germination time in the greenhouse demonstrate geographic clines consistent with available evidence for this species from other studies. In addition, we tested for patterns in germination traits consistent with adaptation to spring thermal conditions by planting seeds from 10 populations in growth chambers simulating Minnesota and Kentucky spring temperatures. Even after accounting for seed mass, seeds from higher latitudes germinated faster on average under all conditions. Elevated temperatures accelerated germination time and leaf development time; however, we did not detect geographic patterns in leaf development time, indicating that the processes underlying the latitudinal cline in germination time may be unique to the germination stage. In the thermal adaptation study, high-latitude populations produced larger seeds and seeds that germinated at a higher rate; however, neither latitudinal trend was observed in the geographic clines study, even though individual seed mass predicted germination success. High-latitude populations express more favorable germination traits in every setting measured, perhaps due to reduced dormancy. Consequently, we conclude that latitudinal clines are more consistent with adaptation to growing season length than to spring temperatures. 
    more » « less
  2. Many mammals can digest starch by using an enzyme called amylase, but different species eat different amounts of starchy foods. Amylase is released by the pancreas, and in certain species such as humans, it is also created by the glands that produce saliva, allowing the enzyme to be present in the mouth. There, amylase can start to break down starch, releasing a sweet taste that helps the animal to detect starchy foods. Curiously, humans have multiple copies of the gene that codes for the enzyme, but the exact number varies between people. Previous research has found that populations with more copies also eat more starch; if this correlation also existed in other species, it could help to understand how diets influence and shape genetic information. In addition, it is unclear how amylase came to be present in saliva, as the ancestors of mammals only produced the protein in the pancreas. Pajic et al. analyzed the genomes of a range of mammals and found that the more starch a species had in its diet, the more amylase gene copies it harbored in its genome. In fact, unrelated mammals living in different habitats and eating different types of food have similar numbers of amylase gene copies if they have the same level of starch in their diet. In addition, Pajic et al. discovered that animals such as mice, rats, pigs and dogs, which have lived in close contact with people for thousands of years, quickly adapted to the large amount of starch present in human food. In each of these species, a mechanism called gene duplication independently created new copies of the amylase gene. This could represent the first step towards some of these copies becoming active in the glands that release saliva. In people, having fewer copies of the amylase gene could mean they have a higher risk for diabetes; this number is also tied to the composition of the collection of bacteria that live in the mouth and the gut. Understanding how the copy number of the amylase gene affects biology will help to grasp how it also affects health and wellbeing, in humans and in our four-legged companions. 
    more » « less
  3. Abstract

    The COVID‐19 pandemic significantly impacted undergraduate education and fundamentally altered the structure of course delivery in higher education. In field‐based biology and ecology courses, where instructors and students typically work collaboratively and in‐person to collect data, this has been particularly challenging. In this context, faculty from the Ecological Research as Education Network (EREN) collaborated with the National Ecological Observatory Network (NEON) to design five free‐flexible learning projects for use by instructors in varied modalities (e.g., socially distanced in‐person, remote, or HyFlex). The five flexible learning projects incorporated the Ecological Society of America’s 4DEE framework and included field data collection, data analysis components, and an activity that incorporates existing NEON field protocols or datasets. Each project was designed to provide faculty members with a high degree of flexibility so that they could tailor the implementation of the projects to fit course‐specific needs. Collectively, these learning projects were designed to be flexible, inclusive, and facilitate hands‐on research while working in alternative classroom settings.

     
    more » « less